EC 320 Math Rules

Here is a list of important math rules you should know. We may not use all of them directly, or I may omit some to save time, but they are generally helpful in econometrics work.

Summation Rules

Let x and y be vectors of length n.

- 1. Summation definition: $\sum_{i=1}^{n} x_i \equiv x_1 + x_2 + \cdots + x_n$
- 2. The sum of x+y is the same as the sum of x plus the sum of y: $sum_i(x_i+y_i) = \sum_{i=1}^n x_i + \sum_i y_i$
- 3. For any constant c, the sum of $c \times x$ is the same as c times the sum of x: $\sum_i cx_i = c \sum_i x_i$
- 4. In general, the sume of x times y is not equal to the sum of x times the sum of y: $\sum_i x_i y_i \neq \sum_i x_i \sum_i y_i$

Variance Rules

- The variance of a constant is zero: Varc = 0
- The variance of a constant times a random variable: $Var(cX) = c^2 Var(X)$
- The variance of a constant plus a random variable: Var(c+X) = Var(x)
- The variance of the sum of two random variables: Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y)

Covariance Rules

- The covariance of a random variable with a constant is 0: Cov(X,c)=0
- The covariance of a random variable with itself is its variance: Cov(X,X) = Var(X)
- Constants can be brought outside of the covariance: Cov(X, cY) = cCov(X, Y)
- If Z is a third random variable, then: Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z)

plim Rules

plim stands for probability limit, that is: $plim_{n\to\infty}\hat{\theta}_n=0$. So as the sample size n increases, the estimator $\hat{\theta}_n$ converges in probability to the true value θ .

Let c be a constant. Let x_n and y_n be sequences of random variables where $plim(x_n) = x$ and $plim(y_n) = y$

- 1. The probability limit of a constant is the constant: plim(c) = c
- 2. $plim(x_n + y_n) = x + y$
- 3. $plim(x_ny_n) = xy$
- 4. $plim(\frac{x_n}{y_n}) = \frac{x}{y}$
- 5. $plim(g(x_n, y_n)) = g(x, y)$ for any function g()

EC 320 Math Rules

Expectations Rules

Let A and B be random variables, and let c be a constant.

- 1. $\mathbb{E}[A+B] = \mathbb{E}[A] + \mathbb{E}[B]$
- 2. In general, $\mathbb{E}[AB] \neq \mathbb{E}[A]\mathbb{E}[B]$
- 3. Constants can pass outside of an expectation: $\mathbb{E}[cA] = c\mathbb{E}[A]$
- 4. Since $\mathbb{E}[A]$ is a constant, then: $\mathbb{E}[B\mathbb{E}[A]] = \mathbb{E}[A]\mathbb{E}[B]$

Conditional Expectations Rules

If the conditional expectation of something is a constant, then the unconditional expectation is that same constant:

If
$$\mathbb{E}[A|B] = c$$
, then $\mathbb{E}[A] = c$.

Why? The law of iterated expectations:

$$\mathbb{E}[A] = \mathbb{E}[\mathbb{E}[A|B]]$$
$$= \mathbb{E}[c]$$
$$= c$$

Log Rules

- 1. $log_e(e) = 1$
- $2. \log(ab) = \log(a) + \log(b)$
- 3. $log(\frac{a}{b}) = log(a) log(b)$
- 4. $log(a^b) = b \times log(a)$